A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control
نویسندگان
چکیده
Background In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Methods Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Results Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli (E. coli) bacteria, and see similar results to previous studies. Conclusion This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.
منابع مشابه
A high-speed magnetic tweezer beyond 10,000 frames per second.
The magnetic tweezer is a single-molecule instrument that can apply a constant force to a biomolecule over a range of extensions, and is therefore an ideal tool to study biomolecules and their interactions. However, the video-based tracking inherent to most magnetic single-molecule instruments has traditionally limited the instrumental resolution to a few nanometers, above the length scale of s...
متن کاملNonlocal elasticity theory for static torsion of the bi-directional functionally graded microtube under magnetic field
The microtubes are important structures in nano electromechanical system .in this study a nonlocal model is presented to investigate the static torsion behavior of microtubes made of bi-directional factionally graded material (BDFGM) subjected to a longitudinal magnetic field. Mechanical properties of BDFGM microtube varies in the radial and longitudinal direction according to an arbitrary func...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کامل